Comparing Overall and Targeted Sentiments in Social Media during Crises
نویسندگان
چکیده
The tracking of citizens’ reactions in social media during crises has attracted an increasing level of interest in the research community. In particular, sentiment analysis over social media posts can be regarded as a particularly useful tool, enabling civil protection and law enforcement agencies to more effectively respond during this type of situation. Prior work on sentiment analysis in social media during crises has applied well-known techniques for overall sentiment detection in posts. However, we argue that sentiment analysis of the overall post might not always be suitable, as it may miss the presence of more targeted sentiments, e.g. about the people and organizations involved (which we refer to as sentiment targets). Through a crowdsourcing study, we show that there are marked differences between the overall tweet sentiment and the sentiment expressed towards the subjects mentioned in tweets related to three crises events.
منابع مشابه
Multilingual Connotation Frames: A Case Study on Social Media for Targeted Sentiment Analysis and Forecast
People around the globe respond to major real world events through social media. To study targeted public sentiments across many languages and geographic locations, we introduce multilingual connotation frames: an extension from English connotation frames of Rashkin et al. (2016) with 10 additional European languages, focusing on the implied sentiments among event participants engaged in a fram...
متن کاملSentiment analysis on social media for stock movement prediction
The goal of this research is to build a model to predict stock price movement using the sentiment from social media. Unlike previous approaches where the overall moods or sentiments are considered, the sentiments of the specific topics of the company are incorporated into the stock prediction model. Topics and related sentiments are automatically extracted from the texts in a message board by u...
متن کاملIdentifying and Tracking Sentiments and Topics from Social Media Texts during Natural Disasters
We study the problem of identifying the topics and sentiments and tracking their shifts from social media texts in different geographical regions during emergencies and disasters. We propose a location-based dynamic sentiment-topic model (LDST) which can jointly model topic, sentiment, time and Geolocation information. The experimental results demonstrate that LDST performs very well at discove...
متن کاملTopic Modeling based Sentiment Analysis on Social Media for Stock Market Prediction
The goal of this research is to build a model to predict stock price movement using sentiments on social media. A new feature which captures topics and their sentiments simultaneously is introduced in the prediction model. In addition, a new topic model TSLDA is proposed to obtain this feature. Our method outperformed a model using only historical prices by about 6.07% in accuracy. Furthermore,...
متن کاملManaging Bad News in Social Media: A Case Study on Domino's Pizza Crisis
Social media has become prominently popular. Tens of millions of users login to social media sites like Twitter to disseminate breaking news and share their opinions and thoughts. For businesses, social media is potentially useful for monitoring the public perception and the social reputation of companies and products. Despite great potential, how bad news about a company influences the public ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016